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Abstract—In multi-tenant clouds, requests need to traverse a set of network functions (NFs) in a specific order, referred to as a service
function chain (SFC), for security and business logic issues. Due to workload dynamics, the central controller of a multi-tenant cloud
needs to frequently update the SFC routing, so as to optimize various network performance, such as load balancing. To achieve
effective SFC routing update, we should consider two critical requirements: system robustness and real-time update. Without
considering these two requirements, prior works either result in fragile clouds or suffer from large update delay. In this paper, we
propose a robustness-aware real-time SFC routing update (R3-UA) scheme which takes both requirements into consideration. R3-UA
pursues robustness-aware real-time routing update through two phases: robust NF instance assignment update and real-time SFC
routing update. Two algorithms with bounded approximation ratios are proposed for these two phases, respectively. We implement
R3-UA on a real testbed. Both small-scale experimental results and large-scale simulation results show the superior performance of
R3-UA compared with other alternatives.
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1 INTRODUCTION

Cloud computing has transformed a large part of the Internet
industry and attracted more and more attention from academic
and industry communities [2], [3], [4]. In multi-tenant clouds, the
cloud vendors (e.g., Amazon Web Services [5] and Google Cloud
Platform [6]) lease computing resources to tenants (e.g., enterpris-
es) with virtual machines (VMs). By renting these computing re-
sources, tenants can migrate not only their computation tasks, such
as training deep neural networks, but also their network functions
(NFs), such as intrusion detection systems and firewalls, to the
cloud [7], [8]. It should be noted that for security and business
logic issues, a tenant’s request should traverse the required NFs
in a specific order. For instance, a protected request forwarded to
a secure server has to traverse a firewall and then an intrusion
detection/prevention system (IDS/IPS) [9]. Usually, such a set of
ordered NFs is referred to as a service function chain (SFC) and
the problem to manipulate requests to fulfill the SFC requirement
is called SFC routing [10].

Due to the time-varying workload in a multi-tenant cloud,
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an SFC routing configuration may be only efficient for a short
duration, and an out-of-date SFC routing configuration will result
in suboptimal performance in terms of load balancing and end-
to-end delay. To pursue high performance in the cloud, we have
to periodically update the cloud configuration by the current
request/traffic characteristics, which is referred to as SFC routing
update [10], [11]. With SFC routing update, the cloud will be
updated from the out-of-date (or current) routing configuration
to the up-to-date one, which will significantly promote the cloud
performance, e.g., reduce the NF/link resource utilization. During
SFC routing update, we should take two important requirements
into considerations for SFC routing update: 1) the up-to-date
configuration can satisfy the system robustness requirements when
encountering system accidents (e.g., NF failures and attacks from
malicious tenants), which is referred to as system robustness; 2)
the up-to-date configuration should be deployed in a limited time,
i.e., real-time update.

System robustness requirements mainly come from the widely
spread malicious tenants and universal NF failures [12], [13].
On the one hand, malicious tenants may use vicious programs
like Bolt [12] to collect information of other tenants as well as
the system. With the help of this information, they can launch
wide spectrum network attacks, including denial of service (DoS)
attacks and co-residency attacks with a high success rate. To
alleviate the impact of these attacks, we expect to limit the number
of NF instances traversed by the requests from each tenant, since a
malicious tenant can easily attack all the NF instances carrying its
requests. On the other hand, the universal NF failures (incurred
by problems such as connectivity errors, hardware faults, and
overloads) will also weaken system robustness. It has been shown
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that the median time of two consecutive failures is 7.5 hours for
firewalls while 5.2 hours for load balancers [13]. For intrusion
detection and prevention systems, the median time between two
consecutive failures is about 20 minutes [13]. Therefore, NF fail-
ures may significantly degrade the robustness of a cloud system.
Since the failure of an NF instance will result in an outage to
the tenants who have requests being served by it, to mitigate the
impact from such universal NF failures and enhance the system
robustness, it is also expected to limit the number of tenants served
by each NF instance.

The real-time update (i.e., complete the update process in a
limited time) is required to ensure that the rules are not out-of-
date after the update procedure is completed. When there are a
large number of requests/flows in the cloud, it will take too much
time to deploy the up-to-date configuration. According to [14], it
takes at least 0.5 milliseconds (ms) for the central controller to
update a routing rule on a commodity switch. Considering that
there are usually millions of requests/flows injected into the cloud
every minute [15], the routing update may cause a huge overhead
to the central controller, and the update delay will be too long to
be acceptable. More specifically, in a moderate-size cloud with
about 10K servers, there may reach 1300K flows/min to a server
hosting around 15 VMs [15]. Even if there are only 100 flows on
each server (less than 1%) that need routing update, it will take
the central controller at least 500s to update the SFC routing of
these flows. Since the workload in the multi-tenant clouds is time-
varying, the rules will be out-of-date after the update procedure is
completed. Accordingly, we need a real-time SFC routing update
scheme in order to complete the SFC routing update in a limited
time. Given the time to install one routing rule into a switch, such
a scheme can only install a limited number of rules to the switches
in the cloud whenever the central controller decides to update the
SFC routing.

Previous works of routing update [11], [16], [17], [18] mainly
concentrate on improving the performance of the data plane,
such as utility maximization or load balancing among links/NF
instances. For example, Qu et al. [18] study the trade-off prob-
lem between network load balancing and route reconfiguration
overhead. They formulate this problem as a multi-objective mixed
integer optimization and propose a heuristic algorithm to solve this
problem. However, these works do not consider the requirements
of system robustness and real-time update, thus may lead to weak
system robustness and long update delay.

To satisfy these two requirements for SFC routing update
in multi-tenant clouds, this paper proposes a robustness-aware
real-time SFC routing update (R3-UA) scheme. R3-UA pursues
robustness-aware real-time routing update through two phases:
robust NF instance assignment and real-time SFC routing update.
The main contributions of this paper are as follows:

1) We propose a robustness-aware real-time SFC routing update
(R3-UA) scheme for multi-tenant clouds, which includes two
phases: robust NF instance assignment update and real-time
SFC routing update.

2) For robust NF instance assignment update, we formulate this
problem as an integer linear programming. An algorithm with
the approximation factor ofO(log h) is designed to solve this

problem, where h is the number of NF instances.
3) For real-time SFC routing update, we propose an algorithm

with a bounded approximation factor, which can complete
the update process under a given delay constraint.

4) We evaluate the proposed algorithms with small-scale testbed
experiments and large-scale simulations using real-world
topologies and datasets. The results show R3-UA can de-
crease update delay by 70% and reduce the impact of
malicious tenants and NF failures on the system robustness
compared with other alternatives.

2 RELATED WORKS

Almost all the previous methods about routing update concentrate
on improving the performance of the data plane, and ignore the
requirements of system robustness and real-time update. Accord-
ing to whether or not to consider SFC requirement, we discuss the
related works in the following two categories.

Routing Update without SFC: Most of the previous works
first compute the target routing configuration based on the current
workload, and then deploy the target routing configuration in
the system. For example, Xu et al. [19] study the route update
by joint optimization of route selection in the control plane and
update scheduling in the data plane. They formulate this problem
as a linear program, and propose two algorithms with bounded
approximation factors. Zheng et al. [20] study how to reroute the
updates of multiple network flows in a synchronized software-
defined network in a congestion-free manner. Then they proposed
their approach based on a time-extended network construction
and resource dependency graph, and implemented this method
by Openflow 1.5 using the scheduled bundles feature. Diman et
al. [21] design an efficient rerouting approach in software-defined
wide area networks to avoid the overload on the overlay path, then
propose a centralized control approach to minimize the network
reconfiguration cost.

Routing Update with SFC: Zhang et al. [16] design Co-
Scaler, which focuses on the cooperative scaling of an SFC with
multiple NF instance pools. Through the logically centralized
control of the software-defined network and the dynamic func-
tion provisioning of network function virtualization, Co-Scaler
computes the subset of existing flows, then migrates them to new
scaled instances when scaling out, which could decrease the num-
ber of packets affected by buffering significantly. Qu et al. [18]
propose a dynamic flow migration problem for embedded services
in NFV/SDN-enabled 5G core networks. They first formulate
this problem as a multi-objective mixed integer program, then
transform it to a tractable mixed-integer quadratically constrained
programming problem, and design a heuristic algorithm based on
redistribution of hop delay bounds.

All of the previous works ignore two critical requirements:
system robustness and real-time update. Thus, these works result
in low robustness caused by malicious tenants and NF failures, and
the target route configuration can be out-of-date after the update
procedure is completed due to the long update delay.
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3 PRELIMINARIES

3.1 Multi-Tenant Cloud Model

A typical multi-tenant cloud consists of four components: a service
function set, a computing node set, a link set and a central
controller.

1) The service function set is composed of different NF in-
stances. Assume that there are b types of NFs, which is denot-
ed as S = {s1, s2, ..., sb}. For clearly problem formulation,
we use Ms = {ms

1,m
s
2, ...,m

s
hs
} to represent the set of NF

instances of service type s ∈ S, where hs = |Ms| is the
number of NF instances with type s. The total number of NF
instances in the cloud is denoted as h, i.e., h =

∑
s∈S hs. We

also use set M = M1∪M2∪ ...∪Ms to denote the set of all
the NF instances. It should be noted that every NF instance
can provide services to limited amount of traffic incurred by
requests, and such processing capacity is denoted by Csi for
NF instance ms

i ∈M .
2) A set of computing nodes is responsible for providing com-

puting resources to tenants via creating VMs.
3) A set of l links E = {e1, e2, ..., el} is used to realize the

data transmission between different NFs/VMs. Let Ce be the
capacity of link e ∈ E.

4) The central controller is responsible for managing the whole
cloud system, e.g., determining the up-to-date routing config-
uration and updating the SFC routing.

Tenants rent VMs and buy services from cloud vendors ac-
cording to their needs in multi-tenant clouds. A set of n tenants
is denoted as T = {t1, t2, ...tn}. Different tenants may generate
traffic with various service requirements on different computing
nodes. We identify a request by four elements <source, desti-
nation, SFC requirement, tenant>. It should be noted that every
tenant can generate a certain number of requests. The request set
is denoted as Γ = {γ1, γ2, ..., γd}, where d = |Γ| is the number
of requests in the cloud. Let f(γ) be the traffic amount associated
with request γ ∈ Γ. For ease of reference, Table 1 summarizes the
key notations used in this paper.

3.2 Problem Statement

R3-UA updates SFC routes with the granularity of requests.
Specifically, all the traffic belonging to the same request will be
assigned to the same NF instances and go through the same path.
However, the packets for different requests, even if they belong to
the same tenant, may be delivered to different instances through
different paths. In general, the goal of R3-UA is to pursue load
balancing among all links and NF instances as in many previous
works [11], [17]. However, there are two specific requirements
that should be satisfied when pursuing system load balancing.

1) During the update process, the system robustness require-
ment should be taken into consideration. A specific tenant
will be assigned with only k NF instances, where k is a
system-specific parameter. By limiting the number of NF
instances that are providing services to an arbitrary tenant,
and leveraging the VM isolation techniques [22], we can
mitigate the impact of attacks launched by a malicious tenant.

TABLE 1: Key Notations

Parameters Description

S a network service type set
M an NF instance set
Ms an NF instance set with service type s ∈ S
h the number of NF instances
hs the number of NF instances with type s ∈ S

Csi
the processing capacity of NF instance ms

i ∈
Ms

E a link set
Ce the capacity of link e ∈ E
T a tenant set
f(t) the total traffic demand of tenant t

Ist,s
whether the NF instance ms

i is assigned to
tenant t or not before the update

Γ a request set
f(γ) the traffic amount associated with request γ

Pγ
the set of candidate routing paths for request
γ ∈ Γ

k
the maximum number of NF instances tra-
versed by the requests from a tenant

q
the maximum number of tenants that can be
served by a NF instance

U the update delay threshold

For each NF instance, it can provide services to at most q ten-
ants. Again, q is a system-specific parameter. This constraint
limits the impact of a single NF failure. By satisfying these
two constraints during SFC routing update, we can enhance
system robustness.

2) Due to the traffic dynamics in multi-tenant clouds, it is
required to complete the update procedure in a pre-defined
time threshold U . Otherwise, the routing configuration would
be out-of-date when the update process is completed. As-
sume the central controller can update one rule in time τ ,
this requirement limits the number of rules that the central
controller can refresh in the update procedure.

In summary, R3-UA is to pursue the system load balancing
among all links and NF instances while satisfying the above two
requirements, real-time update and system robustness, for SFC
routing update in multi-tenant clouds.

3.3 Algorithm Workflow
Inspired by [11], R3-UA will be invoked periodically or event-
driven (e.g., NF failures or link congestion). During the update
process, we need to update the assignment between NF instances
and tenants for robustness requirements (i.e., update NF instance
assignment), and update the SFC routing for each request (i.e.,
update SFC routing). Regarding the update period, we have the
following thoughts: 1) Requests/traffic dynamics are very common
in multi-tenant clouds, which requires the SFC routing update in a
short duration. 2) Although requests are dynamic, the total traffic
of a tenant is relatively stable [23]. From this point of view, we
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can update NF instances assigned to a tenant at a longer interval.
3) When we update the NF instance set of a tenant, the newly
allocated NF instances need to back up the state information of
the tenant’s requests [24]. The traffic fluctuation during this period
will affect tenants’ QoS. Therefore, the NF instances assigned to
a tenant should not be updated frequently.

In practice, R3-UA should invoke NF instance assignment
and SFC routing update in different frequencies. Thus, similar
to [25], R3-UA pursues robustness-aware real-time routing update
through two phases: robust NF instance assignment and real-time
SFC routing update. The first phase is performed in a long-term
granularity (e.g., 10 minutes) to assign NF instances to tenants
under the system robustness constraints (i.e., the first requirement
discussed in Section 3.2). The objective of the first phase is to
minimize the total amount of traffic that needs to be migrated.
The second phase is performed in a short-term granularity (e.g.,
1 minute) to update the SFC routing of each request under delay
constraint (i.e., the second requirement discussed in Section 3.2).

4 ROBUST NF ASSIGNMENT UPDATE

4.1 Problem Formulation

Now, we give the problem formulation of the robust NF instance
assignment update (RNAU) problem. When we update the NF
instance assignment, some of the requests have to be migrated to
other NF instances, which not only introduces considerable system
overhead, but also incurs more routing rule updates. Accordingly,
when we consider updating the NF instance assignment, the
objective is to minimize the total traffic that needs to be migrated.
Let Ist,i be a binary constant as follows: if NF instance ms

i is
assigned to tenant t before the update, we set Ist,i = 1; otherwise
Ist,i = 0. bst,i represent the traffic amount of tenant t processed on
NF instance ms

i , f(t) denote the total traffic demand of tenant t.
For tenant t ∈ T , we use Rst to indicate the proportion of traffic
that needs to be served by service of type s ∈ S. The controller
can use traffic measurement methods such as sampling or sketch
[26] [27] to get each tenants traffic change information for a
period of time since the last update. Based on this information,
the controller can get relatively stable values of f(t) and Rst . It
should be noted that Rst is a constant value belonging to [0, 1]. If
tenant t does not need the service of type s, Rst is set to 0. With
these notations, the RNAU problem can be formulated as follows:

min
∑
t∈T

∑
s∈S

∑
i:msi∈Ms

bst,i · Ist,i · (1− yst,i)

S.t.



∑
i:msi∈Ms

xst,i = Rst , ∀t ∈ T, s ∈ S

xst,i ≤ yst,i, ∀t ∈ T, s ∈ S,ms
i ∈Ms∑

i:msi∈Ms

yst,i ≤ k, ∀t ∈ T, s ∈ S∑
t∈T

yst,i ≤ q, ∀s ∈ S,ms
i ∈Ms∑

t∈T
xst,i · f(t) ≤ Csi , ∀s ∈ S,ms

i ∈Ms

xst,i ∈ [0, 1], ∀t ∈ T, s ∈ S,ms
i ∈Ms

yst,i ∈ {0, 1}, ∀t ∈ T, s ∈ S,ms
i ∈Ms

(1)

where variable xst,i is the traffic proportion of tenant t served by
an NF instance ms

i ∈ Ms, and binary variable yst,i denotes that
whether the NF instance ms

i ∈Ms is allocated to tenant t or not.
The first set of equations means that the traffic proportion of

tenant t ∈ T which receives service of type s ∈ S should be
equal to Rst . The second set of inequalities says that the traffic of
tenant t can be processed by NF instance ms

i if and only if NF
instance ms

i is allocated to tenant t. The third set of inequalities
denotes that each tenant’s traffic will be processed by at most k
NF instances. The fourth set of inequalities represents that each
NF instance can process traffic from at most q tenants. The last set
of inequalities limits the traffic load on each NF instance.

4.2 Robust NF Insatance Assignment Algorithm
Due to the binary nature of the variables in Eq. (1), it is an NP-
Hard problem, which is difficult to solve efficiently [25]. In this
section, we propose an NF instance assignment update algorithm
(NAUA) to solve Eq. (1) in polynomial time. In this algorithm,
there are two steps. The first step is to formulate it as a linear
programming which can be efficiently solved, by replacing {yst,i}
with its fractional version. After being relaxed, the variable {yst,i}
means the probability of NF instance ms

i assigned to tenant t.
Suppose the optimal solutions of the relaxed version of Eq. (1) are
{x̃st,i} and {ỹst,i}, in the second step, we determine how to assign
NF instances to each tenant, based on such optimal solutions. For
each type of network service s ∈ S, we first calculate k(t) =
b
∑
i:msi∈Ms

ỹst,ic, which will be the number of NF instances of
service type s that should be assigned to tenant t (we will see
in section 4.3 that k(t) must be smaller than k). Then we divide
all the NF instances into k(t) groups by pursuing load balancing
among groups, i.e., minimize the maximum value of

∑
ỹst,i∈g

ỹst,i,
where g denote a group. For each group g, we assign NF instance
ms
i to tenant t with probability

ỹst,i
zg

, and the traffic proportion of

tenant t processed by this instance is set to
x̃st,i·zg
ỹst,i

, where zg is the
sum of values of instances in group g. Till now, we have assigned
k(t) NF instances with service s ∈ S for each tenant t ∈ T . The
above algorithm is summarized in Algorithm 1.

4.3 Performance Analysis
This section analyzes the approximation performance of the pro-
posed NAUA algorithm. We first propose the following theorem.
Theorem 1. The proposed NAUA algorithm guarantees that each

tenant t ∈ T will be allocated at most k NF instance with
service type s ∈ S.

Proof: For each tenant t ∈ T and network service s ∈
S, we put all NF instances with value ỹst,i into k(t) groups in
order to minimize the maximum value of

∑
ỹst,i∈g

ỹst,i, where g
denote a group. Then we choose an NF instance in each group
with probability

ỹst,i
zg

. Thus, we will get k(t) NF instances in total.
According to the third constraints in Eq. (1) and the definition of
k(t), we have:

k(t) = b
∑

i:msi∈Ms

ỹst,ic ≤
∑

i:msi∈Ms

ỹst,i ≤ k (2)
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Algorithm 1 NF Instance Assignment Update Algorithm
1: Step 1: Solving the Relaxed Problem
2: Construct a linear program by replacing with yst,i ∈ [0, 1] in

Eq. (1)
3: Obtain the optimal solutions {x̃st,i} and {ỹst,i}
4: Step 2: Instance Assignment to Each Tenant
5: for each tenant t ∈ T do
6: for each network service s ∈ S do
7: Let k(t) = b

∑
i:msi∈Ms

ỹst,ic
8: Put variables in {ỹst,i} into k(t) group by pursuing load

balancing among groups
9: for each group g do

10: Let zg be the sum of values of instances in group g
11: Assign NF instance ms

i in group g to tenant t with
probability

ỹst,i
zg

12: if NF instance ms
i is assigned to tenant t then

13: Set the traffic proportion of tenant t processed by
instance ms

i to
x̃st,i·zg
ỹst,i

14: end if
15: end for
16: end for
17: end for

It means that k(t) ≤ k, i.e., we can strictly guarantee that the
number of NF instances with service type s assigned to tenant t
will not exceed k.

Lemma 2. For any group g, the lower bound of the sum zg is
greater than 0.5 and not greater than k(t)

2k(t)−1 .

Proof: First, we prove that the lower bound is greater than
0.5. For each tenant t and network service s ∈ S, according to the
definition of k(t), it follows that:∑

i:msi∈Ms

ỹst,i = k(t) + ε, 0 < ε < 1 (3)

Now, we give the definition of two sets as follows:{
Y1 = {ỹst,i|0.5 < ỹst,i < 1,ms

i ∈Ms}
Y2 = {ỹst,i|0 < ỹst,i < 0.5,ms

i ∈Ms}
(4)

In this way, we can put the values in a group into these
two sets according to the definition of these two sets. Then
we arbitrarily select two values denoted as yst,i1 and yst,i2 from
set Y2, and compute their sum denoted as yst,i3 . If the value
of yst,i3 is less than 0.5, we put this new value into Y2, i.e.,
Y2 = Y2−{yst,i1 , y

s
t,i2
}+{yst,i3}. Otherwise we put it into set Y1

and remove these two values from Y2, i.e., Y1 = Y1 +{yst,i3} and
Y2 = Y2−{yst,i1 , y

s
t,i2
}. We repeat the operations until there is at

most one value in Y2. We make an assumption that there are less
than k(t) values in Y1, which means that the number of values
in Y1 is at most k(t) − 1. According to the definition of Y1, the
values in Y1 are all less than 1. We have:∑

i:yst,i∈Y1

ỹst,i < k(t)− 1 (5)

Since there is only one value in Y2, the sum of values in Y2 is:∑
i:yst,i∈Y2

ỹst,i < 0.5 (6)

Then it follows that:∑
i:msi∈Ms

ỹst,i =
∑

i:yst,i∈Y1

ỹst,i +
∑

i:yst,i∈Y2

ỹst,i < k(t)− 0.5 (7)

Eq. (7) contradicts
∑
i:msi∈Ms

ỹst,i = k(t) + ε, 0 < ε < 1 in
Eq. (3), which means the assumption that there are less than k(t)
values in Y1 does not hold. Thus, there are at least k(t) values
in Y1. Since we use min-max sum strategy to put instances into
groups, the total value zg in any group g must be greater than 0.5.

Now we prove that the lower bound of zg is not greater
than k(t)

2k(t)−1 . We assume that there are 2k(t) − 1 instances with

identical values k(t)
2k(t)−1 . When we assign these values to k(t)

groups, it is obvious that there exists a group which only has
one instance with value k(t)

2k(t)−1 . Thus, there does not exist an
assignment scheme to make sure the sum of values of instances in
any group is greater than k(t)

2k(t)−1 .
In order to facilitate the description of approximation analysis,

we now give two famous lemmas for probability analysis.

Theorem 3 (Union Bound). Given a countable set of n
events:A1, A2, ..., An, each eventAi happens with possibility
Pr(Ai). Then, Pr(A1 ∪A2 ∪ ... ∪An) ≤

∑n
i=1Pr(Ai).

Theorem 4 (Chernoff Bound). Given n independent variables:
y1, y2, ..., yn, where ∀zi ∈ [0, 1]. Let µ = E[

∑n
i=1 yi]. Then,

Pr[
∑n
i=1 yi ≥ (1 + ε)µ] ≤ e

−ε2µ
2+ε , in which ε is an arbitrary

value greater than 0.

Assuming that the minimum capacity of NF instances is
denoted by Cminm , we define a constant value α as follows:

α = min

{
min

{
Cminm

f(t)
, t ∈ T

}
, q

}
(8)

Theorem 5. The proposed NAUA algorithm can achieve the
approximation factor of 3·log h

α +3 for the NF instance capacity
constraints.

Proof: We first prove that for each tenant t ∈ T and service
type s ∈ S, we have E[x̂st,i] = x̃st,i. Specifically, for any variable

x̃st,i, we set x̂st,i =
x̃st,i·zg
ỹst,i

with probability of
ỹst,i
zg

. Thus, we have
E[x̂st,i] = x̃st,i.

Let variable ϕst,i be the load generated by tenant t ∈ T on NF
instance ms

i ∈ M with network service s ∈ S. The expectation
of traffic load of NF instance ms

i is:

E

[∑
t∈T

ϕst,i

]
=
∑
t∈T

E[ϕst,i]

=
∑
t∈T

x̃st,i · f(t) ≤ Csi (9)

Eq. (9) shows that the NAUA algorithm can guarantee that
the expectation of traffic load of NF instance ms

i is less than the
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process capacity Csi . Combining the definition of α in Eq. (8), we
have: 

ϕst,i · α
Csi

∈ [0, 1]

E
[∑
t∈T

ϕst,i · α
Csi

]
≤ α

(10)

By applying Chernoff Bound Theorem, we assume that ρ is an
arbitrary positive value. It follows:

Pr

[∑
t∈T

ϕst,i · α
Csi

≥ (1 + ρ) · α
]
≤ e

−ρ2·α
2+ρ (11)

Now, we assume that:

Pr

[∑
t∈T

ϕst,i · α
Csi

≥ (1 + ρ)

]
≤ e

−ρ2·α
2+ρ ≤ 1

h3
(12)

where h is the number of NF instances. The solution for Eq.
(12) can be expressed as:

ρ ≥
3 · log h+

√
9 · log2 h+ 24 · α · log h

2λ

⇒ ρ ≥ 3 log h

α
+ 2, h ≥ 2 (13)

Then using Union Bound Theorem, we have:

Pr

[ ∨
i:msi∈Ms

∑
t∈T

ϕst,i · α
Csi

≥ (1 + ρ)

]

≤
∑

i:msi∈Ms

Pr

[∑
t∈T

ϕst,i · α
Csi

≥ (1 + ρ)

]

≤ h · 1

h3
≤ 1

h2
, ρ ≥ 3 log h

α
+ 2 (14)

Eq. (14) means that the proposed NAUA algorithm can guar-
antee that the total load on NF instance ms

i ∈Ms will not exceed
the fractional solution by a factor of 1+ρ = 3·log h

α +3 with high
probability.

Theorem 6. The proposed NAUA algorithm guarantees that the
number of tenants handled by an NF instance with service
type s will not exceed q by a factor of 2 · ( 3·log h

α + 3).

Proof: According to the second step of NAUA algorithm,
in each group g, NF instance ms

i is chosen with probability of
ỹst,i
zg

. Combining Lemma 2, we have:

Pr
[
ŷst,i = 1

]
=
ỹst,i
zg
≤ 2 · ỹst,i (15)

Then we can analyze the approximation ratio performance
based on the randomized rounding method. Since the proof pro-
cess is similar to that of Theorem 5 and the space is limited, we
omit it here.

Theorem 7. After the rounding process, the total traffic migrated
from old NF instances into newly allocated NF instances will
not exceed the fractional solution.

Proof: According to Lemma 2, we have:

Pr
[
ŷst,i = 1

]
=
ỹst,i
zg
≥ 2 · k(t)− 1

k(t)
· ỹst,i ≥ ỹst,i (16)

Then, with the NAUA algorithm, the total traffic migrated from
old NF instances onto newly allocated NF instances is:∑

t∈T

∑
s∈S

∑
i:msi∈Ms

bst,i · Ist,i · (1− ŷst,i)

≤
∑
t∈T

∑
s∈S

∑
i:msi∈Ms

bst,i · Ist,i · (1− ỹst,i) (17)

Eq. (17) means that the NAUA algorithm can guarantee that
the optimization objective will not exceed the fractional solution
after randomized rounding. Similar to Theorem 5 and 6, The
NAUA algorithm can also achieve the approximation factor of
O(log h) for the objective value.

In conclusion, after the NF instance allocation is updated, the
capacity of each NF instance and the constraints on the number of
tenants served by each NF instance will not be violated by a factor
of O (log h), and NAUA can achieve the approximation factor
of O (log h) for the objective value. Thus, we can conclude that
NAUA can achieve bi-criteria approximation factor [28].

4.4 Discussion
Actually, the robustness constraints proposed in this paper can
also be applied to other scenarios. In the following, we give two
practically application scenarios.

Virtual Machine (VM) Placement [29]. In data centers, a
server usually hosts the VMs of multiple tenants. We can apply
the robustness constraints to the problem of VM placement.
Specifically, to prevent the failure of a server from affecting too
many tenants, we can limit the number of tenants that a server
provides resources to. In addition, to limit the range of servers
that a malicious tenant can attack, we can restrict the number of
servers where a tenant can place VMs.

Task Offloading [30]. In edge clouds, users tasks are offloaded
to edge servers to achieve better application responsiveness. We
can limit the number of users that an edge server can serve to
control the range of tenants affected by an edge device failure.
Moreover, to limit the range of edge servers attacked by users
malicious requests, we can restrict the number of edge servers
assigned to each user.

5 REAL-TIME SFC ROUTING UPDATE (RTU)
5.1 Problem Definition for RTU
Using the NAUA algorithm, we can derive the set of NF instances
assigned to each tenant. On the basis of this assignment, we first
construct a set of candidate routing paths for each request γ ∈ Γ
(denoted as Pγ), such that its SFC requirement and robustness
constraints can be satisfied with any path in this candidate set.
For each request, the SFC routing path will be recorded in the
packet header by the ingress switch. Though there is no path field
in classic IP packets, we can use fields like MPLS labels or other
unused fields in the packet header as tags to record the SFC routing
information [10], [11], [31]. Whenever the route of a request is
updated, the central controller updates the corresponding rules in
the ingress switch. In general, the time to update a rule is relatively
stable (e.g., 0.5 milliseconds according to [14]), which will be
denoted as τ in the following.
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To update the SFC routing in a real-time manner, we need to
select a new path from the candidate path set for each request
under a given delay constraint. Suppose we want to complete the
SFC routing update in time U , we can only update routes for
a limited number of requests (i.e., U

τ requests). Assuming that
the path for request γ before and after the update is p∗ and
p, respectively, then we use t(γ, p, p∗) to indicate whether the
updated path p is the same as the path p∗ or not. If p and p∗

are the same, which means that the routing path of request γ
does not need to be updated, we have t(γ, p, p∗) = 0. Otherwise,
t(γ, p, p∗) = 1, which means the route of request γ needs to be
updated. With these notations, we can formulate the RTU problem
as follows:

min ψ

S.t.



∑
γ∈Γ

∑
p∈Pγ

zpγ · t(γ, p, p∗) · τ ≤ U∑
p∈Pγ

zpγ = 1, ∀γ ∈ Γ∑
γ∈Γ

∑
p∈Pγ :msi∈p

zpγ · f(γ) ≤ Csi · ψ, ∀s ∈ S,ms
i ∈Ms∑

γ∈Γ

∑
p∈Pγ :e∈p

zpγ · f(γ) ≤ Ce · ψ, ∀e ∈ E

zpγ ∈ {0, 1}, ∀γ ∈ Γ, p ∈ Pγ
(18)

where binary variable zpγ denotes whether the request γ selects the
feasible path p ∈ Pγ or not.

The first set of inequalities says the update delay, i.e., the
time to update the SFC routing in flow tables, cannot exceed the
threshold U . The second set of equations means that every request
will be forwarded through a path in the candidate path set. The
third and fourth sets of inequalities express that the updated traffic
load on each NF instance and link cannot exceed Cm · ψ and
Ce · ψ, respectively, where ψ is the maximum resource (for both
NF instances and links) utilization. Our objective is to achieve
the load balance among links and NF instances, i.e., minimize the
maximum resource utilization ψ.

It should be noted that in the RTU problem, after updating the
route configuration, each NF instance does not need to be equal
to the output of the first phase. When solving the RNAU problem,
we obtain the traffic demand of each tenant through the long-term
observation and statistical collection since the last update. When
solving the RTU problem, the rounding-based routing update
(RBRU) algorithm first collects the currently existing requests
in the system, and then determines the up-to-date configuration
according to the NF instance assignment results in the first phase.
Therefore, the traffic information input of the first stage comes
from long-term statistical collection, and that of the second phase
comes from the currently existing requests in the system. That
is, the traffic inputs in these two phases are fully different.
Hence, after updating the route configuration, each tenants traffic
proportion served by each NF instance does not need to be equal
to the output of the first phase.

5.2 Algorithm to Solve RTU

Since the variable zpγ is binary, it is difficult to solve RTU in
a timely manner. Accordingly, in this section, we propose a
rounding-based routing update (RBRU) algorithm to efficiently
solve the RTU problem. This algorithm consists of two steps.
Similar to Algorithm 1, we first relax zpγ ∈ [0, 1] in (18) and derive
a linear programming problem. In the solution of such a relaxed
linear programming problem, each request may be split and routed
through multiple paths, which is not feasible to RTU. Accordingly,
in the second step, we will choose a unique path for each request
and obtain the integer solutions {ẑpγ} based on a rounding method.
Assume the optimal solutions of the relaxed linear programming
problem are {z̃pγ}, then for each request γ ∈ Γ and feasible path
p ∈ Pγ , we set ẑpγ = 1 with probability z̃pγ . That is, the request γ
will be routed through path p with probability z̃pγ . We summarize
the RBRU algorithm in Algorithm 2.

Algorithm 2 RBRU: Rounding-Based Routing Update
1: Step 1: Solving the Relaxed Routing Update Problem
2: Construct a linear programming by replacing with zpγ ∈ [0, 1]

in Eq. (18)
3: Obtain the optimal solutions {z̃pγ}
4: Step 2: Selecting Routes Using Randomized Rounding
5: Derive an integer solution {ẑpγ} by randomized rounding
6: for each request γ ∈ Γ do
7: for each feasible path p ∈ Pγ do
8: Set ẑpγ = 1 with probability of z̃pγ
9: if ẑpγ = 1 then

10: Request γ will be routed through path p
11: end if
12: end for
13: end for

5.3 Performance Analysis

In this section, we analyze the approximate performance of the
proposed RBRU algorithm. Let the minimum capacity of all links
and that of all NF instances be denoted by Cmine and Cminm ,
respectively. We first define a constant variable β as follows:

β = min{min{C
min
e · ψ̃
f(γ)

,
Cminm · ψ̃
f(γ)

, γ ∈ Γ}, U
τ
} (19)

We present the following theorems to illustrate the approxi-
mation ratio of the RBRU algorithm. Since the proof process is
similar to that of Theorem 5, we omit the detail of the proofs here.

Theorem 8. After the rounding process, the update delay will not
exceed the threshold U by a factor of 3·log h

β + 3 with high
probability.

Theorem 9. The RBRU algorithm guarantees that the total traffic
on any NF instance will not exceed the amount according to
the fractional solution by a factor of 3·log h

β + 3.

Theorem 10. The proposed RBRU algorithm guarantees that the
total traffic on any link e ∈ E will not exceed the traffic of the
fractional solution by a factor of 3·log |E|

β + 3.



IEEE/ACM TRANSACTIONS ON NETWORKING, VOL., NO., DEC 2021 8

Approximation Factors: From the above theorems, by up-
dating the routing path of the selected requests on chosen paths,
the update delay constraint will hardly be violated by a factor of
3·log h
β +3, and the processing capacity of NF instances will hardly

be violated by a factor of 3·log h
β + 3, and the link capacity will

hardly be violated by a factor of 3·log |E|
β + 3. It means that the

algorithm can achieve the optimal solution, violating the update
delay constraint by at most a factor 3·log h

β + 3, the NF instance
capacity by at most a factor 3·log h

β +3, and the link capacity by at

most a factor 3·log |E|
β +3. By using the traffic controlling method,

the intensity of each request can be limited to a specific value, so
that the network congestion can be avoided.

It should be noted that RBRU can achieve almost the constant
approximation in most practical situations. For example, let ψ̃ be
0.4. Consider a large-scale clouds with h = 1000 NF instances
and |E| = 1000 links, the update delay constraint U = 2s.
The central controller needs 0.5ms to update a forwarding rule
in the data plane [14]. Observing the practical traffic traces, the
maximum intensity of a request can reach 10Mbps [32]. The
capacity of links and NF instances are both 1Gbps. Under this
case, the approximation factors for update delay constraint, NF
instance capacity and link capacity are all 3.2. In other words, the
RBRU algorithm can achieve almost the constant approximation
for the real-time SFC routing update problem in many situations.

6 PERFORMANCE EVALUATION

6.1 Performance Metrics and Benchmarks

6.1.1 Performance Metrics
We adopt the following nine performance metrics to evaluate
the efficiency of the R3-UA scheme: (1) the update delay [11];
(2) the maximum link utilization [11]; (3) the maximum NF
instance utilization [30]; (4) the maximum number of NF instances
assigned to a tenant [30]; (5) the maximum number of tenants
served by an instance; (6) the control traffic overhead [31]; (7) the
round-trip time (RTT) [33]; (8) the packet loss ratio [34]; (9) the
flow completion time (FCT) [11].

During a simulation running, we use R3-UA to perform robust
NF assignment update and real-time SFC routing update. We use
the time to complete the entire update process as the update delay.
After the update process is complete, we compute the maximum
link utilization, which is defined as max{l(e)/Ce, e ∈ E}, where
l(e) is the traffic load on link e. Similar to link utilization, we
also obtain the maximum NF utilization, which is defined as
max{l(ms

i )/C
s
i ,m

s
i ∈ Ms, s ∈ S}, where l(ms

i ) is the load on
NF instance ms

i ). Moreover, we measure the maximum number
of NF instances assigned to a tenant and the maximum number of
tenants served by each NF instance, which shows the degree of
negative effect caused by malicious tenants and NF failures.

Since the control traffic overhead, RTT, packet loss ratio
and FCT can not be obtained in the simulation, we measure
these metrics through a small-scale testbed. Specifically, during
a testbed run, we use the total traffic sent by the central controller
to the data plane during the update process as the control traffic
overhead. After the update process is completed, we measure RTT

and packet loss rate by executing the command ping, and use
iPerf3 to obtain the FCT information.

6.1.2 Benchmarks
This paper proposes two algorithms, NAUA and RBRU, to solve
robust NF instance assignment update and real-time SFC routing
update, respectively. These two algorithms constitute the R3-UA
scheme. We compare R3-UA with the other three benchmarks. The
first benchmark is a heuristic routing update algorithm (HRUA),
modified form [16] [35]. Specifically, HRUA first selects the NF
instances/links whose load is heavier than the average load, called
heavy-loaded instances/links. Then, HURA traverses each heavy-
loaded instance/link in turn, and updates the routes of requests
on the current heavy-loaded NF instance/link until the load of the
current heavy-loaded instance/ink is not greater than the average
load. Different from the first benchmark, the second benchmark
only updates the path of the elephant flows. This kind of method is
modified from [11] [36]. Compared to updating routes of all traffic,
only updating the routes of elephant flows can effectively reduce
the update cost of the centralized controller. By this benchmark,
the target routes of elephant flows are determined by the multi-
commodity flow (MCF) algorithm, which is classic and widely
used multi-path routing algorithm. Then, this benchmark uses a
scheduling algorithm (e.g., Dionysus [17]) to update the routing
scheme from the current configuration to the target one. In a word,
this benchmark only updates elephant flows using the joint MCF
and Dionysus and it is denoted as EMDS for simplicity. The last
benchmark is the current network configuration (CURR), modified
from the classic OSPF protocol and [37]. It does not update the
routing of any traffic. This benchmark is used to show that routing
update can improve network performance (i.e., reduce resource
utilization).

6.2 Simulation Evaluation
6.2.1 Simulation Settings
We conduct simulations on two typical topologies. The first topol-
ogy is the Fat-Tree [38], which contains 80 switches (including
16 core switches, 32 aggregation switches, and 32 edge switches)
and 128 servers. The second topology is VL2 [39], which contains
70 switches and 245 servers. The capacity of each link on both
topologies is 1 Gbps. The authors in [40] present the throughput
results for 9 different types of NFs on a single CPU. We can derive
the processing capacity of each type of NF according to [40]. Since
these two topologies do not provide NF information, we utilize the
virtualization mechanism [41] to deploy nine types of NFs. We use
the data traces of Alibaba Cluster [42] to generate requests. Note
that, these data traces only contain the information of the traffic
size of each request. To be more practical, we use the gravity
model to generate the traffic matrix [43]. The SFC requirement
of each tenant is randomly generated from the NF set [11]. We
construct a layered graph and use the Yen’s algorithm [44] to
pre-calculate the candidate paths for all requests. According to
[14], we set the time to install or modify a forwarding rule as
0.5ms. The number of tenants is set to 300. Moreover, according
to the size of the two topologies, we set the maximum number of
instances traversed by the requests from each tenant to be 5, i.e.,
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Fig. 1: Link Utilization vs. Update Delay Constraint
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Fig. 2: NF Instance Utilization vs. Update Delay Constraint
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Fig. 3: Update Delay vs. Number of Requests

 0.2

 0.4

 0.6

 0.8

 1

 2  2.5  3  3.5  4  4.5  5

L
in

k
 U

ti
li

za
ti

o
n

No. of Request (× 10
4
) 

CURR
EMDS
R

3
-UA

HRUA

(a) Fat-Tree Topology

 0.2

 0.4

 0.6

 0.8

 1

 2  2.5  3  3.5  4  4.5  5

L
in

k
 U

ti
li

za
ti

o
n

No. of Requests (× 10
4
) 

CURR
EMDS
R

3
-UA

HRUA

(b) VL2 Topology

Fig. 4: Link Utilization vs. Number of Requests When U = 2s

k = 5, and the maximum number of tenants served by each NF
instance to be 50, i.e., q = 50, by default.

6.2.2 Simulation Results
We run five sets of simulations to verify the effectiveness of our
algorithm. The first set of simulations mainly investigates how the
update delay constraint affects link utilization and NF instance
utilization on two topologies. When there are 30K requests in the
cloud, we change the update delay constraint, and the load balance
performance, i.e., the maximum resource utilization, is shown in
Figs. 1 and 2. These figures show that link utilization and NF
instance utilization are reduced when the update delay constraint
becomes loose in R3-UA. Since EMDS and HRUA do not consider
the update delay, the change of update delay constraint does not
affect link utilization and NF instance utilization of these two
algorithms. Compared with HRUA, when R3-UA achieves similar
performance as HRUA, the update delay in R3-UA is lower. For
instance, when there are 30K requests on VL2 topology, HRUA
needs about 7s to update all the forwarding rules by the right plot
of Fig. 3. The right plots of Fig. 1 and 2 show that R3-UA can
achieve the similar route performance with a update delay of 2s.
Compared with EMDS, when the update delay constraint exceeds
2s, R3-UA not only has a lower update delay than that of EMDS,
but also has better load balancing performance.

The second set of simulations studies the update delay by
changing the number of requests in the cloud. Fig. 3 indicates that
the update delay of HRUA and EMDS almost linearly increases
with the number of requests in the network, while the update delay
in R3-UA is always maintaining at a low level. For example, when
there are 40K requests on fat-tree topology, HRUA takes more
than 8s to update the SFC routing, while R3-UA only takes 2s
to update the SFC routing, which means that R3-UA can reduce
the update delay more than 75% compared with HRUA. This
result shows that the update delay in R3-UA is less than that
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Fig. 5: NF Instance Utilization vs. Number of Requests When U = 2s

of the comparison algorithms. This is because R3-UA takes the
update delay constraint into account. With such a constraint, it
will select those requests that can significantly improve the system
performance, i.e., reduce the maximum resource utilization, and
update their SFC routing.

The third set of simulations shows how the number of requests
affects the maximum resource utilization, including link utilization
and NF instance utilization, when the update delay threshold U
is set to 2s. Figs. 4 and 5 show that the maximum resource
utilization in R3-UA is closer to that of HRUA as the number
of requests increases, while the update delay in R3-UA is much
lower. Besides, compared with CURR and EMDS, R3-UA can
achieve lower resource utilization and update delay. For example,
in the left plot of Fig. 4, when there are 50K requests on fat-
tree topology, the gap between R3-UA and HRUA is around 6%,
and the update delay in R3-UA and HRUA are 2s and 11s,
respectively. Also, R3-UA can reduce link utilization by 14%
and 44% compared with CURR and EMDS, respectively. This
is because that CURR does not take update operation, and EMDS
only updates the elephant using the MCF algorithm instead of
selecting the requests that have the most significant impact on the
system performance to update their SFC routing.
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Fig. 6: Maximum Number of NFs vs. Number of Requests
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Fig. 7: Maximum Number of Tenants vs. Number of Requests
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Fig. 9: NF Instance Utilization vs. Time

The fourth set of simulations shows how the number of
requests affects the maximum number of NF instances allocated
to a tenant and the maximum number of tenants that an NF
instance provides service to. Figs. 6 and 7 show that R3-UA
always performs better on these two metrics compared with other
benchmarks. For example, in the left plot of Fig. 6, when there are
50K requests, the maximum number of NF instances allocated to
a tenant through CURR, EMDS, HRUA and R3-UA are all 20,
while the value of R3-UA is 5. In the left plot of Fig. 6, when
there are 50K requests, an NF instance should provide services
for at most 166, 167, 162 and 50 tenants, according to CURR,
EMDS, HRUA and R3-UA, respectively. Thus, R3-UA performs
better on these two metrics and has better system robustness. This
is because R3-UA considers the robustness constraints.

The fifth set of simulations illustrates the effectiveness of R3-
UA which consists of the robust NF instance assignment algorithm
called NAUA and the real-time SFC routing update algorithm
called RBRU. We design the first comparison algorithm called
NAWO that determines the NF instance set for each tenant at
the beginning of the system without NF instance assignment
update and real-time SFC routing update. Each request in NAWO
is routed through the shortest path by default. We also devise
the second comparison algorithm called NAWU that updates NF
instance assignment using the NAUA algorithm every 6 minutes,
but it does not use RBRU to conduct the real-time SFC routing
update. Then, the algorithms that run NAUA every 6 minutes and
run RBRU every 1 minute with update delay constraint 2s and 4s
as R3-UA1 and R3-UA2, respectively. As shown in Figs. 8 and
9, though it can reduce the maximum utilization of links and NF
instances to a certain extent by running NAUA without RBRU,
its performance is not as good as that of R3-UA. Specifically,
when the cloud runs for 6 minutes, the performance gap between
NAWU and R3-UA is at least 15%. This set of simulations shows

the superiority of combined algorithms (i.e., R3-UA) of NAUA
and RBRU.

From the above simulation results, we can make the following
conclusions. First, in Figs. 1-2, with the increase of the update
delay constraint, our algorithm can update more requests, and
thus achieves better resource utilization. Second, Figs 3-5 show
that, with the increase of request number, R3-UA can achieve
much lower update delay, and the resource utilization performance
between R3-UA and that of HRUA is within 6%. Third, Figs. 4-7
show that, our proposed algorithm can obtain much better system
robustness, and its impact on resource utilization performance can
be ignored. Fourth, Figs. 8-9 show the importance of combining
NAUA and RBRU for R3-UA compared with running only NAUA
without RBRU.

6.3 Testbed Evaluation

6.3.1 Testbed Implementation

We implement CURR, EMDS, HRUA and R3-UA on a small-
scale topology Telstra, which contains eight switches [45]. Since
the topology does not provide NF information, we utilize the
virtualization mechanism [41] to deploy three types of NFs (i.e.,
Firewall, NAT, Proxy) and place five instances of each NF type.
Each NF instance and switch (implemented by Open vSwitches,
version 2.9.2 [46]) runs on a single server with a Core i5-7500
processor and 8G of RAM. Besides, we use RYU [47] as the
controller software running on another server with a Core i7-8700k
and 32GB of RAM. We implement our tests with the data trace
of Alibaba Cluster [48]. All requests need to go through Firewall-
NAT-Proxy. There are 20 tenants in the testbed and each tenant
generates 100 requests. Moreover, we set k = 2, q = 8 and 1500
requests by default. We adopt the command ping to measure the
RTT and the packet loss ratio. Besides, we use the iPerf3 tool [49]
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to generate tenants’ traffic and the vnStat tool [50] to monitor and
collect the traffic information.

6.3.2 Update Performance

Figs. 10-15 show our experimental results of the update per-
formance on the testbed. First, Figs. 10-11 mainly show how
the route update delay constraint affects the link utilization and
NF utilization on two topologies. Given 2K requests in the
testbed, we change the update delay constraint, and measure the
link utilization and NF utilization. It can be observed that the
maximum link utilization and NF instance utilization in R3-UA are
reduced. Moreover, the resource utilization gap between R3-UA
and the comparison algorithms is also reduced when the update
delay threshold becomes larger. Specifically, when update delay
constraint is set to 120ms, the resource utilization gap between
R3-UA and HRUA is less than 5%. Second, Figs. 12-13 evaluate
the update delay and control traffic overhead by changing the
number of requests with update delay constraint of 120ms. It
shows that R3-UA can reduce the update delay and control traffic
overhead by 60% and 59%, respectively, compared with HRUA.
Third, Figs. 14-15 show the robustness performance of CURR,
EMDS, HRUA and R3-UA by changing the number of requests
in the testbed. Fig. 14 shows that the requests of a tenant are
processed by 15 NF instances in clouds through EMDS, HRUA
and CURR, while only 8 NF instances (including Firewall, NAT,
proxy) will be assigned to a tenant through R3-UA. It means
that R3-UA can reduce the maximum number of NFs allocated
to a tenant by 60% compared with the comparison algorithms

when there are 2K requests. Fig. 15 shows that R3-UA can also
reduce the maximum number of tenants that an NF instance serves
by 47% on average compared with HRUA, CURR and EMDS.
Thus, R3-UA can achieve better robustness performance when
encountering NF failures and malicious tenants.

From these results, we can make the following conclusions.
First, in Figs. 10-11, with the increase of the update delay con-
straint, R3-UA can update more requests, and thus achieve better
resource utilization. Second, in Figs. 12-13, with the increase num-
ber of requests, R3-UA can reduce the update delay and control
traffic overhead by 60% and 59%, respectively, compared with the
comparison algorithms. Third, in Figs. 14-15, R3-UA can reduce
the number of affected NF instances by 60% if encountering
malicious tenants, and decrease the number of affected tenants
by around 47% if encountering NF failures.

6.3.3 Performance Comparison with a Malicious Tenant

In this section, we conduct the testbed under the scenario with a
malicious tenant to fully explain that limiting the number of NF
instances traversed by the requests from each tenant can enhance
the system robustness. Specifically, we randomly choose a tenant
as a malicious one, and the malicious tenant uses the hping tool
[51] to launch a DDoS attack on its assigned NF instances. Then
we measure RTT, packet loss ratio and FCT for performance
comparison. To measure RTT more fairly, we test the RTT of
each NF instance 100 times. Since the testbed contains 15 NF
instances, there are totally 1500 tests. Figs. 16(a)-16(b) show that
around 75% of the RTT results are less than 5ms through R3-UA,
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while more than 46.2% of RTT results are greater than 100ms
through the comparison algorithms. Taking the instances of NAT
as an example, Fig. 16(c) shows the average RTT results of each
NAT instance. We observe that the average RTT of R3-UA is much
lower than that of the comparison algorithms. The average RTTs
of R3-UA, EMDS, HRUA and CURR are 42.6ms, 139.8ms,
127ms, and 108ms, respectively. It means that R3-UA can reduce
the average RTT by 67.5%, 66.5% and 60.5% compared with
EMDS, HRUA and CURR, respectively. Since the number of NF
instances that the malicious tenant can access through R3-UA is
limited, R3-UA can achieve lower RTT.

We investigate the packet loss ratio performance in Figs. 17(a)-
17(c). Similarly, we also generate 1500 test cases to measure the
packet loss ratio. From Figs. 17(a)-17(b), we find that R3-UA can

guarantee no packet loss in more than 60% of the tests, while no
packet loss can be ensured in less than 20% of the tests by the
comparison algorithms. Fig. 17(c) shows the average packet loss
ratio results of each NAT instance. We observe that the average
packet loss ratio of NAT instances through R3-UA is much lower
than that of the comparison algorithms. Specifically, the average
packet loss ratios through R3-UA, EMDS, HRUA and CURR are
8.05%, 21.6%, 17.07% and 18.48%, respectively.

We study the FCT performance given 1.5K requests in Figs.
18(a)-18(c). From Figs. 18(a)-18(b), we observe that most of the
FCT results under R3-UA are less than 10ms, while around 70%
of the FCT results through the comparison algorithms are greater
than 100ms. Fig. 18(c) illustrates the average FCT results of each
NAT instance. It shows that the average FCT through R3-UA is
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much lower than that of the comparison algorithms. R3-UA can
reduce the average flow completion time by 66.9%, 62.2% and
57% compared with EMDS, HRUA and CURR, respectively.

From the above experimental results, we see that the per-
formances of RTT, packet loss ratio and FCT of R3-UA are
much better than those of the comparison algorithms. R3-UA can
reduce the average RTT, packet loss ratio and FCT by around
65%, 58%, 62%, respectively, compared with the comparison
algorithms. These experimental results also show that limiting the
number of NF instances traversed by the requests from each tenant
can indeed enhance the system robustness when encountering
malicious tenants.

6.3.4 Performance Comparison with a Failed Instance
In order to fully explain that limiting the number of tenants served
by each NF instance can enhance the system robustness, this
section focuses on the scenario with an NF instance failure. Since
tenants expect their traffic to be handled as soon as possible, the
99%tile completion time of flows can reflect the QoS of tenants
[52]. Thus, we mainly measure the 99%tile completion time of
flows per tenant.

The experimental results are shown in Fig. 19. We randomly
shut down an instance to simulate its failure. Since the flows
processed by the failed instance need to be migrated to a working
NF instance, the completion time of these flows will become
much longer. Thus, the 99%tile flow completion time of tenants
served by the failed instance is much longer than that of tenants
served by other working instances. By Fig. 19, we know that
the number of tenants affected by the failed NF instance are 8
and 15 corresponding to R3-UA and the comparison algorithms.
The average 99%tile completion times of flows through R3-UA,
EMDS, HRUA and CURR are 127.25ms, 205.4ms, 208.25ms
and 207.6ms, respectively. It means that R3-UA can reduce the
average 99%tile completion time of flows by 61.2% on average
compared with the comparison algorithms.

From the experimental results in Fig. 19, we observe that the
average 99%tile completion time of flows by R3-UA is much

shorter than that of the comparison algorithms. These experimental
results mean that limiting the number of tenants served by each
NF instance can indeed enhance the system robustness when
encountering NF failures.

7 CONCLUSION

In this paper, we propose a robustness-aware real-time SFC
routing update (R3-UA) scheme, which takes into consideration
the requirements of real-time routing update and system robust-
ness in multi-tenant clouds. R3-UA contains two phases: robust
NF instance assignment update and real-time SFC routing update.
Two algorithms with bounded approximation factors have been de-
signed to solve the robust NF instance assignment update problem
and the real-time SFC routing update problem, respectively. Both
experimental results and simulation results show high efficiency
of our proposed algorithms.
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